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Overview

Primary Topic: Scattering Theory

Part 1: Quantum Mechanical Scattering Theory — Scattering of non-relativistic
many-body systems

Part 2: Quantum Field Theory — Algebraic quantum field theory, Haag–Ruelle
scattering theory, and Araki–Haag detectors

Part 3: Mourre’s Conjugate Operator Method — Positive commutator techniques
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Scattering Theory

Goal: To understand how a system of interacting particles evolves asymptotically.

Key concept: asymptotic completeness

Definition

Asymptotic completeness asserts that every state can be decomposed into
bound and scattering states:

H = Hbound ⊕Hscat,

where Hbound and Hscat are the spaces of bound and scattering states, re-
spectively.
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Part 1

Quantum Mechanical
Scattering Theory

Scattering of non-relativistic many-body systems



Quantum Mechanical Scattering Theory

Let H be a many-particle Hamiltonian (with centre-of-mass motion removed) on
the Hilbert space L2(R3(n−1)):

H = − 1
2
∆+

∑
a
Va(xa),

where −∆ is the Laplacian, a is a cluster decomposition of {1, . . . ,n}, and Va is a
(many-body) interaction potential.

Asymptotic completeness is equivalent to asymptotic clustering:

lim
t→±∞

‖ e− itHψ −
∑
a

e− itHaψa,±‖ = 0,

where Ha = −∆+
∑

b≤a Vb(xb) are cluster Hamiltonians.

In the two-particle case (n = 2), ψ ∈ L2(R3) is an eigenstate of H (bound state), or
e− itHψ ∼ e− itH0ψ± approaches a solution of the free system (V = 0) as t → ±∞. 5



Three-Particle Scattering Channels

A B C

breakup
A B C

elastic
A B C

rearrangement
A B C
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History of Quantum Mechanical Scattering Theory

1950s

1959

1963

1978-84
1981

1987

1993

2 particles (Kato, Rosenblum, Kuroda, ...)

formulation of N-particle problem (Hack)

3 particles (Faddeev; Ginibre–Moulin ’74, Thomas ’75)

3 particles, short- and long-range forces (Enss)
Mourre estimate (Mourre; Perry–Sigal–Simon ’81, Froese–Herbst ’82)

N particles, short-range (Sigal–Soffer; Graf ’90, Yafaev ’93)

N particles, long-range (Dereziński; Sigal–Soffer ’94)

Faddeev equations

R(z) = R0(z)− R0(z)
∑
a,b

MabR0(z),

Mab = Taδab + TaR0(z)
∑
c 6=a

Mcb,

Ta = Va + VaRa(z)Va.

Phase-space analysis,
propagation estimates∫ ∞

1

∥∥∥(xat − Da
)
qa
(x
t

)
ψt

∥∥∥2 dt
t

≤ C‖ψ‖2

Propagation of quantum particles is con-
centrated along classical trajectories.

Mourre estimate

E(J)[H, iA]E(J) ≥ θE(J), θ > 0,

E spectral measure of H.
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Asymptotic Completeness in Quantum Field Theory

• φ42 model (in two spacetime dimensions):
• 2 particles [Spencer–Zirilli ’76]
• 3 particles [Combescure–Dunlop ’82]
• in finite volume [Dereziński–Gérard ’00]

• Integrable models
• with factorising S-matrix [Lechner ’08]

• Non-relativistic QFT:
• (confined) Pauli–Fierz Hamiltonian [Dereziński–Gérard ’97]
• Rayleigh scattering [Fröhlich–Griesemer–Schlein ’02]
• Compton scattering [Fröhlich–Griesemer–Schlein ’04]
• Nelson model (below three-particle threshold) [Dybalski–Møller ’14]
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Challenges in Quantum Field Theory

Conceptual challenges:

Determining the particle content is already a difficult problem. It is not possible
to read off the particle content from the Lagrangian or the equations of motions
(e.g. solitons in φ42).

QFT allows for processes that create or annihilate particles.

Technical challenges:

Dynamical properties of systems with non-quadratic dispersion relation are not
well understood.
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Asymptotic Completeness for Dispersive Systems

Open problem: Prove asymptotic completeness for dispersive Hamiltonians:

H = h(D) +
∑
a
Va(xa).

Difficulty: Inter-cluster motion depends on the internal motion of the particles
within the clusters. Separation of external and internal motion only in the
quadratic case, h(D) = D2.

Results:

• Asymptotic completeness in the two-particle case is proved.
• The Mourre estimate generalises [Dereziński ’90, Gérard ’91, Damak ’97].
• Low- and large-velocity estimates can be established.
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Part 2

Quantum Field Theory

Algebraic quantum field theory,
Haag–Ruelle scattering theory,
and Araki–Haag detectors



Algebraic Quantum Field Theory

The focus in algebraic quantum field theory is on observables.

Fundamental object: net of observables {A(O)}O, A(O) ⊂ B(H) von Neumann
algebras, O ⊂ R4 spacetime regions.

Properties of the net:

• Isotony: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2).
• Locality: O1,O2 space-like separated⇒ [A(O1),A(O2)] = 0.
• Poincaré covariance: ∃ unitary rep. U : R4 o L → B(H) s.t.
U(x,Λ)A(O)U(x,Λ)∗ = A(ΛO+ x).

• Vacuum vector: ∃Ω ∈ H\{0} s.t. U(x, 1)Ω = Ω.
• Spectrum condition: U(x, 1) = e− ix·P, the spectrum of the energy-momentum
operators P = (H,P) is contained in the forward light-cone.

• Strong spectrum condition: There is an isolated mass shell of one-particle
states in the energy-momentum spectrum. 12



Haag–Ruelle Scattering Theory — Creation Operators

Definition

Let A ∈ A(O) be a local observable. A creation operator B∗ is an operator of
the form B∗ =

∫
R4 f (x)A(x)dx, where supp(f̂ ) is close to the mass shell.

H

P
Ω

B∗
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Haag–Ruelle Scattering Theory — Scattering States

Theorem

For all creation operators B∗1 , . . . ,B∗n, and all f1, . . . , fn ∈ L2(R3), the limits

ψ1 × · · · × ψn := lim
t→∞

B∗1,t[f1,t] . . .B∗n,t[fn,t]Ω

exist, where ψi = Bi,0[fi,0]Ω, fi,t is a solution of the Klein–Gordon equation
with initial data fi, and B∗t [ft] =

∫
R3 ft(x)B

∗(t, x)dx. The space of scattering
states,

Hout := span{Ω, ψ1 × · · · × ψn | n ∈ N, ψ1, . . . , ψn ∈ hm},

is identical to the Fock space over the one-particle space hm.
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Asymptotic Completeness

Definition

A quantum field theory model is asymptotically complete if H = Hout.

Establishing asymptotic completeness axiomatically is difficult because

• additional bound states embedded in the multi-particle spectrum may exist
(e.g. solitons in φ42),

• typically, quantum field theories have a rich superselection structure; pairs of
charged particles may form states in the vacuum sector,

• pathological counterexamples (generalised free fields) fitting into the
axiomatic setting exist.
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Asymptotic Completeness

Model-independent strategy for proving asymptotic completeness:

1. Identification of particle detectors: identify observables that can be
interpreted as particle detectors.

2. Triggering by scattering states: show that particle detectors can only be
triggered by scattering states. Prove that every state in the orthogonal
complement of the scattering states lies in the kernel of all particle detector.

3. Accessibility of quantum states: demonstrate that every quantum state can
trigger at least one particle detector.
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Detectors

Definition

A detector is an almost local observable C that annihilates the vacuum vec-
tor Ω (i.e. CΩ = 0).

Definition

An observable A is almost local if there exists a sequence (Ar)r∈N of observ-
ables, where Ar ∈ A(Kr) is localised in the double cone Kr of radius r, such
that

‖A− Ar‖ ≤ CNr−N.

Typical example: C = B∗B, where B∗ =
∫
R4 f (x)A(x)dx is a creation operator.
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Araki–Haag Formula

Let C = B∗B be a detector. The observable C(t, x) converges weakly to 0 as t → ∞
due to dispersion. We integrate over R3 to compensate for dispersion:

C(h; t) = eitH
∫
R3
h
(x
t

)
(B∗B)(x)dx e− itH, h ∈ L∞(R3).

The integral is well-defined due to a uniform bound by Buchholz (1990).

Theorem (Araki–Haag formula, 1967)

Let φ, ψ ∈ Hout be scattering states. If ω(p) =
√
|p|2 +m2, then

lim
t→∞

〈φ, C(h; t)ψ〉 = (2π)3
∫
R3
h(∇ω(p))〈p|B∗B|p〉〈φ,a∗out(p)aout(p)ψ〉dp.

The r.h.s. is a particle counter with sensitivity 〈p|B∗B|p〉 and velocity filter h.
18



Convergence of Araki–Haag Detectors

Problem: Prove convergence of Araki–Haag detectors on arbitrary states.

Dybalski–Gérard (2014) obtained convergence of products of Araki–Haag detectors
sensitive to particles with distinct velocities (i.e. supp(h1) ∩ supp(h2) = ∅):

C(h1, t)C(h2, t)

= eitH
∫
R3
h1
(x
t

)
(B∗1B1)(x)dx

∫
R3
h2
(y
t

)
(B∗2B2)(y)dy e− itH.

They achieved this convergence result by translating large-velocity and
phase-space propagation estimates from QM to QFT.

They did not cover the convergence of a single detector and detectors sensitive to
particles with the same velocity due to a missing low-velocity propagation
estimate.
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Convergence of Araki–Haag Detectors

Theorem (Kr24)

Let ψ ∈ Hac(H,P) have bounded energy. If Bψ is a one-particle state, then

C(h, t)ψ = eitH
∫
R3
h
(x
t

)
(B∗B)(x)dx e− itHψ

converges as t → ∞. The limit is 0 if ψ ∈ (Hout)⊥.

∆

p0

p
Ω

B∗

B
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Convergence of Araki–Haag Detectors

Theorem (Kr24)

Let ψ ∈ Hac(H,P) have bounded energy. If Bψ is a one-particle state, then

C(h, t)ψ = eitH
∫
R3
h
(x
t

)
(B∗B)(x)dx e− itHψ

converges as t → ∞. The limit is 0 if ψ ∈ (Hout)⊥.

Spectral decomposition of H:

H = Hpp(H,P)⊕Hac(H,P)⊕Hsc(H,P).

Typically, Hpp(H,P) = span{Ω}, Hsc(H,P) ↔ mass shells

Hsc(H,P) may contain exotic states for which we cannot control convergence.
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Main Steps of the Proof — Insertion of a Second Detector

1. The proof of the theorem reduces to the L2-convergence of

e− it(ω(Dx)+ω(Dy))〈e− itHψ,B∗(x)B∗2(y)Ω〉, ω(Dx) =
√
|Dx|2 +m2.

(Similar to existence/completeness of wave operators in QM.)

Lemma

If ∆ ⊂ R4 is a compact set sufficiently close to the mass shell, then there is
a creation operator B∗2 such that

E(∆) = E(∆)

∫
R3
(B∗2B2)(y)dy E(∆),

where E is the spectral measure of the energy-momentum operators P.

21



Main Steps of the Proof — Cook’s Method

2. Prove the Cauchy property by Cook’s method (i.e. prove that the t-derivative is
integrable) and formulate expression in relative coordinates (u, v):∫ t2

t1
e− iτ(ω( 12Dv+Du)+ω( 12Dv−Du))〈ψ, eiτH e− iv·Pφ(u)〉dτ,

φ(u) ∼ [B∗(u),B∗2]Ω.

The commutator [B∗(u),B∗2]Ω arises from the fact that

HB∗2(y)Ω = ω(Dy)B∗2(y)Ω

because B∗2(y)Ω is a one-particle state. Observe that, due to locality,

‖[B∗(u),B∗2]‖ ≤ CN〈u〉−N.
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Main Steps of the Proof — Removal of Centre-of-Mass Motion

3. Remove the centre-of-mass motion through fibration over total momentum Dv
(i.e. take the Fourier transformation Fv→p):

ωp(Du) = ω(p/2+ Du) + ω(p/2− Du).

We must prove convergence of the following expression:∫
Rs

∫
Rs

∣∣∣∣∫ t2

t1
e− iτ(ω( 12p+Du)+ω( 12p−Du))Fv→p〈ψ, eiτH e− iv·Pφ(u)〉dτ

∣∣∣∣2 dudp

=

∫
Rs

sup
‖f‖L2=1

∣∣∣∣∫ t2

t1

∫
Rs
f (u) e− iτωp(Du)Fv→p〈ψ, eiτH e− iv·Pφ(u)〉dudτ

∣∣∣∣2 dp.
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Main Steps of the Proof — Local Decay Estimate

4. Apply the Cauchy–Schwarz inequality (ν > 1/2):∫ (
sup

‖f‖L2=1

∫ t2

t1
‖(1+ |Ap|)−ν eiτωp(Du)f‖2L2 dτ

)

×
(∫ t2

t1
‖(1+ |Ap|)νFv→p〈ψ, eiτH e− iv·Pφ〉‖2L2 dτ

)
dp,

where Ap ∼ u is a modified generator of dilations. The second factor is controlled
by locality (QFT), the first by a local decay estimate (Mourre’s method, QM):

∫ ∞

−∞
‖(1+ |Ap|)−ν eiτωp(Du)f‖2L2 dτ ≤ C‖f‖2L2 .
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Part 3

Mourre’s Conjugate Operator
Method

Positive commutator techniques



Mourre’s Conjugate Operator Method — Mourre Estimate

Mourre’s conjugate operator method is a powerful mathematical technique from
spectral theory, which is based on a strictly positive commutator estimate.

Definition

Let H, A be self-adjoint operators. H obeys aMourre estimate with conjugate
operator A on an open set J ⊂ R if

E(J)[H, iA]E(J) ≥ aE(J), a > 0,

where E is the spectral measure of H.

Typical example from QM: H = −∆, A = (x · D+ D · x)/2⇒ [−∆, iA] = −2∆.
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Key Results from the Mourre Estimate

Assume H obeys a Mourre estimate on J with conjugate operator A. Let K ⊂ J be
compact and ν > 1/2. Key results from the Mourre estimate:

• Limiting absorption principle (LAP):

sup
λ∈K,µ>0

‖(1+ |A|)−ν(H− λ∓ iµ)−1(1+ |A|)−ν‖ <∞.

• Local decay estimates (LDE):

∫
R
‖(1+ |A|)−ν eitHE(K)f‖2 dt ≤ CK‖f‖2.

• Absolutely continuous spectrum: The spectrum of H in J is purely abs. cont. 27



Triangle of Mourre Theory

[H, iA] ≥ a

LDELAP

σ(H) is purely a.c.

28



Applications in Quantum Field Theory

Mourre’s method can be applied to analyse spectral properties of the
energy-momentum operators (H,P) in quantum field theory.

Commutation relation of momentum Pj and Lorentz boost Kj in direction j:

[Pj, iKj] = H ≥ 0.

Mourre Estimate:

E(|Pj| ≥ a)[Pj, iKj]E(|Pj| ≥ a) ≥ aE(|Pj| ≥ a), a > 0

Conclusion: The spectrum of Pj outside {0} is purely absolutely continuous.
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Applications in Quantum Field Theory

Further results:

• It is possible to apply Mourre’s method to prove that the joint spectrum of P
is purely absolutely continuous away from 0.

• There is also a Mourre estimate for the Hamiltonian H in quantum field
theory.

• The conjugate operator is more complicated in this case. It is constructed from
the energy-momentum operators and the Lorentz boosts.

• This is an interesting result because the Hamiltonian in quantum field theory is
typically rather abstract. The Hamiltonian is obtained through a limiting
procedure from renormalisation or defined axiomatically as the generator of
time translations.

• A Mourre estimate had previously been proved by Dereziński–Gérard (2000) for
the Hamiltonian of the φ42 model in finite volume.

30



Summary



Conclusion and Outlook

• Asymptotic completeness is a challenging open problem in local relativistic
quantum field theory (QFT).

• There is a strategy to establish asymptotic completeness that uses particle
detectors (Araki–Haag detectors).

• We proved the convergence of a single Araki–Haag detector for arbitrary
states ψ ∈ Hac(H,P) below the three-particle threshold. This result is a key
prerequisite for proving asymptotic completeness.

• Mourre’s method can be utilised in spectral and scattering theory of QFT.
• Possibly, further methods from many-body quantum mechanics can be
transferred to QFT to prove the convergence of Araki–Haag detectors in the
multi-particle region.
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